James Miller

Statistics for Data Science

Notify me when the book’s added
To read this book, upload an EPUB or FB2 file to Bookmate. How do I upload a book?
Get your statistics basics right before diving into the world of data science
About This BookNo need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs;Implement statistics in data science tasks such as data cleaning, mining, and analysisLearn all about probability, statistics, numerical computations, and more with the help of R programsWho This Book Is ForThis book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful.
What You Will LearnAnalyze the transition from a data developer to a data scientist mindsetGet acquainted with the R programs and the logic used for statistical computationsUnderstand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and moreLearn to implement statistics in data science tasks such as data cleaning, mining, and analysisLearn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networksGet comfortable with performing various statistical computations for data science programmaticallyIn DetailData science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on.
This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks.
By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically.
Style and approachStep by step comprehensive guide with real world examples
This book is currently unavailable
352 printed pages
Original publication
2017
Publication year
2017
Have you already read it? How did you like it?
👍👎
fb2epub
Drag & drop your files (not more than 5 at once)